Green Supply Chain Impact on Sweetener Costs

Multi-dimensional Impact Analysis of Green Supply Chain on sweeteners Costs 

The impact of green supply chain on sweetener costs is reflected in multiple dimensions, such as cost composition, driving factors and risk control, by integrating environmental protection concepts and supply chain links. Its core logic lies in the selection of raw materials, optimization of production processes, logistics upgrading and other means to achieve environmental benefits while dynamically adjusting the cost structure.

The direct impact of green supply chain cost structure on sweetener cost.

Raw material cost fluctuation and green selection 

Sweetener production relies on agricultural raw materials such as corn and cane sugar, and the green supply chain requires the selection of green raw materials (such as organically grown corn) that comply with environmental standards, which may lead to an increase in procurement costs. However, in the long term, cost efficiency can be optimized through strategies such as centralized purchasing and collaborative supplier management.1 For example, high-fold sweeteners produced by biofermentation (e.g., erythritol) that use renewable energy-driven processing of raw materials can have higher initial costs, but policy subsidies (e.g., green purchasing subsidies) can partially offset the incremental costs.

Green Technology Inputs to the Production Process 

The application of green production technologies (e.g., energy-efficient fermentation equipment, cleaner production processes) requires an upfront investment in equipment, but can reduce energy consumption and waste disposal costs. In the case of a sweetener company, for example, replacing the traditional crystallization process with membrane separation technology can reduce water consumption by more than 30% and long-term operating costs by about 15%.1 In addition, energy-saving and emission-reduction measures in the production process (e.g., waste heat recovery, by-product resourcing) can further hedge the cost of technology inputs.

Double effect of logistics and waste disposal costs.

Green logistics (e.g., electric truck transportation, biodegradable packaging) will increase short-term inputs, but through the optimization of transportation routes, co-distribution and other strategies can reduce the unit logistics costs.1 In terms of waste treatment, if the fermentation residue in the production of sweeteners is converted into feed or organic fertilizers through the use of resource technology, the treatment costs can be converted into a secondary income, forming a “cost-benefit” closed loop. "Closed loop.

Conclusion: Green Supply Chain's Long-Term Value Remodeling of Sweetener Costs 

The impact of green supply chain on sweetener costs is not simply “increasing” or “decreasing”, but rather exchanging short-term investment for long-term competitiveness. Enterprises need to balance policy compliance, market demand and technological investment, and turn environmental costs into brand premiums and efficiency dividends through supply chain optimization, technological innovation and collaboration. In the future, with the refinement of carbon footprint accounting and intelligent management, the green supply chain will become the core engine of sweetener enterprises to reduce costs and increase efficiency.

How the sweetener industry can realize green supply chain management

To realize green supply chain management in the sweeteners industry, it is necessary to carry out low-carbon, recycling and sustainable transformation of the whole chain from raw material procurement, production process, logistics and transportation, waste treatment to end consumption. The following are the specific implementation paths and key points: 

Upstream: green raw material procurement and supplier management 

Sustainable agricultural practices 

Prioritize the procurement of raw materials from sustainable cultivation (e.g. stevia, corn starch, etc.), and require suppliers to provide organic certification or proof of low-carbon cultivation (e.g. reducing the use of pesticides/fertilizers and protecting biodiversity).

Promote the “contract farming” model by signing long-term agreements with farmers and providing technical training to optimize farming efficiency and reduce environmental footprint.

Supplier Assessment and Collaboration 

Establish a supplier ESG (Environmental, Social and Governance) scoring system, and incorporate carbon emissions, water utilization and other indicators into procurement criteria.

For highly polluting segments (e.g., precursor production of chemically synthesized sweeteners), require suppliers to adopt clean technologies (e.g., enzyme-catalyzed replacement of traditional chemical synthesis).

Second, production links: clean technology and resource recycling 

Low-carbon production processes 

Adopt green technologies such as bio-fermentation and membrane separation to replace energy-intensive processes (e.g. traditional chemical synthesis of aspartame).

Promote waste heat recovery and solar/biomass energy to replace fossil energy to achieve carbon neutral target in the production chain.

Water and Waste Management 

Establish closed-loop water treatment system to reduce wastewater discharge; anaerobic fermentation of highly concentrated organic wastewater to produce biogas.

By-product resource utilization (e.g. plant residues from stevioside production are used for organic fertilizer or biofuel).

III. Logistics and Packaging: Reduction and Decarbonization 

Green Transportation Network 

Optimize logistics routes, giving preference to rail or sea transport as an alternative to road transport; pilot hydrogen or electric trucks for short-distance distribution.

Establish regionalized storage centers to reduce the need for long-distance transportation.

Environmentally friendly packaging design 

Use biodegradable materials (e.g. PLA) or lightweight packaging; promote the “large packaging + consumer packaging” model to reduce the use of plastic.

Cooperate with downstream customers to establish a packaging recycling system (e.g. deposit return system).

Downstream Cooperation and Consumer Education 

Customer Collaboration for Carbon Reduction 

Provide low-carbon sweetener solutions for food and beverage customers, helping them optimize their formulations to reduce usage (e.g., sucralose's high sweetness characteristics can reduce transportation energy consumption).

Enhance supply chain transparency by tracing the carbon footprint of products through blockchain technology.

Consumer guidance 

Enhance the price premium of environmentally friendly products by labeling them with “green sweetener” certifications (e.g. Carbon Trust certification).

Conduct popularization campaigns to correct the cognitive bias that natural sweeteners must be more environmentally friendly than synthetics (with full life cycle assessment data).

V. Digitalization and Policy Synergy 

Technology Enablement 

Use IoT to monitor energy consumption data of each link in the supply chain and optimize resource scheduling through AI.

Develop LCA (Life Cycle Assessment) tools to quantify the environmental impact of different sweeteners and guide decision-making.

Policy and Industry Standards 

Actively participate in the development of green standards for the sweetener industry (e.g. ISO 14067 carbon footprint standard).

Seek government subsidies or tax incentives to support green technology R&D (e.g. cell culture method for sweetener production).

Thickening principle of thickeners

Overview of thickeners principles of thickeners 

Thickeners are a class of substances that can increase the viscosity of a material system or form a gel, and their thickening principle mainly involves molecular structure and interactions, changes in the rheological properties of the solution, etc. There are differences in the principles of different types of thickeners, which are widely used in a variety of fields, such as food, paints, coatings, and so on.

The core thickening mechanism of thickeners 

Formation of macromolecular network structure: thickeners in solution will form macromolecular network structure, these macromolecular networks can lock a large amount of liquid, so that the viscosity of the solution increases.

Change the rheological properties of the solution: the thickener can change the rheological properties of the solution, so that the solution from a Newtonian fluid into a non-Newtonian fluid, that is, under the action of shear, the viscosity of the solution will be reduced with the increase in shear, but in the static or low-shear conditions, the viscosity of the solution will be relatively high.

Intermolecular interactions: thickeners will interact with each other to form aggregates or aggregates, which can increase the viscosity of the solution.

The effect of electrolytes: some thickeners need to add electrolytes in the process of use, such as inorganic salts, the presence of these electrolytes can affect the thickening effect of the thickener.

The specific thickening principle of different types of thickeners 

Natural gum thickeners: such as polypolysaccharide, etc. is through the polypolysaccharide sugar unit contains 3 hydroxyl groups and water molecules interact to form a three-dimensional hydration network structure, so as to achieve the effect of thickening.

Cellulose thickeners: mainly through the hydrophobic main chain and the nearby water molecules through hydrogen bonding, thus increasing the space of free movement between the particles to Increase viscosity. At the same time can also be entangled around the molecular chain to achieve the viscosity of the role, this is because in the static or low shear rate, cellulose is mainly in a disordered state; and in high shear rate, the molecules parallel to the activities of the bias was ordered in the shape of the fabric, so the viscosity of the system to land.

Polyacrylic acid thickeners: mainly thickeners dissolved in water, this kind of thickeners then through the carboxylate ions of the same sex electrostatic repulsion, molecular chain from the beginning of the helical development of the rod, increase the viscosity between the water phase, but also through the formation of a mesh layout of the emulsion particles and pigments to increase the viscosity.

Conjugated polyurethane thickener: the molecular layout of this type of thickener is the introduction of hydrophilic groups and hydrophobic groups, when the concentration of the aqueous solution across a particular concentration, it will form micelles, micelles and polymer particles into a mesh layout, thus making the system viscosity growth.

Inorganic thickeners: a kind of thixotropic gel minerals that absorb water and swell.

 

What are the environmental effects of calcium propionate?

The effects of calcium propionate in the environment are multi-faceted, and are analyzed in the following aspects: 

Stability: Calcium propionate is more stable in the environment, which means that its chemical properties are not easy to change under natural environmental conditions, and it can maintain its own structure and properties for a certain period of time.

Degradability: Calcium propionate is not easy to be degraded, it is difficult to be quickly converted into other substances in the natural environment through natural ways such as microbial decomposition, and may exist in the environment for a long time.

Production and use process: In the production and use process of calcium propionate, care needs to be taken to prevent environmental pollution. Although it itself has a low impact on the environment, the production process may produce some waste and wastewater, etc., which, if not handled properly, may have an adverse effect on the surrounding environment. For example, wastewater discharged during the production process may cause damage to water ecosystems if it contains untreated calcium propionate or other chemical substances; during use, if a large amount of calcium propionate enters the soil in an unreasonable manner, it may affect the soil's acidity and alkalinity and the structure of microbial communities, etc.

What is Stevioside?

Stevia, also known as stevia glycoside and commonly known as stevia, is a new type of natural sweetener extracted from stevia (or stevia leaf), an herb of the Asteraceae family.123 The following will be a detailed description of its source, composition, properties, characteristics, safety and scope of use in various aspects: 

Source and Composition 

Plant Source: Stevia is originally from Paraguay and Brazil, and is now cultivated in China, Singapore, Nowadays, it is also grown in China, Singapore, Malaysia and other countries. Stevioside is a kind of glycoside extracted from the leaves of stevia.

Composition: The sweet component consists of stevioside and stevia A glycoside, B glycoside, C glycoside, D glycoside and E glycoside.

Physical and Chemical Properties 

Appearance and Status: white to slightly yellow crystalline powder or granule, with cool sweet odor.

Solubility: soluble in water, in the air will quickly absorb moisture, solubility at room temperature more than 40%.

Stability: stable in acid and salt solutions, more stable nature at room temperature. Very stable in pH 3 - 10 range, easy to store. Good solution stability, in the general beverage food pH range, heat treatment is still very stable. In the organic acid containing sucrose solution stored for half a year with little change; in the acid and alkali medium does not decompose, can prevent fermentation, discoloration and precipitation.

Characteristics 

High sweetness: the sweetness is 250 - 450 times that of sucrose, but with a slight astringent flavor, stevia A glycoside with obvious bitterness and a certain degree of astringency and menthol flavor, taste characteristics to be worse than stevia disaccharide glycoside A, moderately palatable, the aftertaste of the pure product is less, it is the closest to granulated sugar as a natural sweetener, but the concentration of a high level of off-flavors will have a strange sense. The sweetness of the purified Rebaudioside A sugar is about 450 times sweeter than sucrose, with a better taste.

Low calorie: It is not absorbed after consumption and does not produce calories, so it is a good natural sweetener for diabetes and obesity patients.

Flavor synergy: with citric acid or glycine and good taste; with sucrose, fructose and other sweeteners, taste quality is better. When it is used with citric acid, tartaric acid, amino-acids, etc., it has the effect of killing the aftertaste of steviol glycosides, so it can play the role of correcting the flavor when mixed with the above substances, and improve the quality of the sweet taste of steviol glycosides.

Dissolution characteristics: dissolution temperature and sweetness of the taste of the relationship between the general low-temperature dissolution of high sweetness; high-temperature dissolution after the taste of good but low sweetness.

Safety 

The acute toxicity test of Stevia shows that the oral LD50 of stevia crystals in mice is 16g/kg. Preclinical and clinical studies have shown that the use of stevia extract is safe for the general population, including diabetics, children and pregnant women, as well as people with unknown side effects or allergies. It has been consumed by residents of its origin (Paraguay, Brazil and other places in South America) for hundreds of years, and no toxic effects have been found so far.

China's National Standard for Food Safety, Standard for the Use of Food Additives (GB2760 - 2014) clearly stipulates the scope of use and the amount of steviol glycosides.

Scope of use 

Food field: it can be used in all kinds of food, such as candy, pastry, beverage, solid beverage, fried small food, seasoning, candied fruit and so on. It can also be used in the production of chewing gum, bubble gum and candies with various flavors; it is used in the manufacture of hard candy together with lactose, maltose syrup, fructose, sorbitol, maltitol and lactone sugar. In addition, it can be used in canned food (canned fruits, aquatic products and canned meat, etc.), pickled products (radish and other pickles, squash), aquatic products (canned fish, kelp, etc.), and meat food (sausage, ham, bacon, etc.), which can play the role of seasoning, antiseptic, prolonging the shelf life, and improving the flavor.

Beverage field: It can be used in soft drinks, orange juice, various fruit juices, ice cream, beer, fruit wine, white wine and other beverages. It can be used in beverages to increase the sweetness, reduce the pungency of wine, and increase the whiteness and durability of beer foam.

Other fields: It can also be used in cigarettes, milk powder and other products, and can also be used as a ripening agent for fruits and vegetables, and used for salt-free storage of foodstuffs.

What Certifications Matter When Buying BBQ Equipment for Your Country?

When purchasing Korean BBQ equipment for a restaurant or retail business, it’s not just about the design or price. Certifications play a crucial role in making sure your equipment is safe, legal, and suitable for your local market.


Whether you’re importing a Korean BBQ grill for your dining tables or installing smokeless BBQ equipment to create a cleaner indoor environment, the right certifications are essential. Here’s what you need to know.

Korean bbq table


1. UL Certification (United States)
The UL (Underwriters Laboratories) mark is required for electrical and gas-powered cooking equipment in the U.S. Many smokeless BBQ equipment systems and built-in Korean BBQ grills must meet these standards.
Why it matters:
Ensures compliance with local safety codes.
Required by many fire departments and health inspectors.
Common in commercial restaurant kitchens.


2. ETL Certification (North America)

ETL is similar to UL and widely accepted across the U.S. and Canada. It’s often used for electric BBQ grills, exhaust systems, and smokeless BBQ tables.
Why it matters:
Accepted alternative to UL.
Covers both gas and electric Korean BBQ grill units.
Helps with insurance and inspection approvals.


3. CE Certification (European Union)

All electrical or gas-operated BBQ grills, including smokeless Korean BBQ grill systems, must carry the CE mark to be legally sold in Europe.
Why it matters:
Proves compliance with EU health, safety, and environmental standards.
Important for equipment operating under high heat or power.
Required for importing and customs clearance in EU countries.


4. NSF Certification (Global – Food Safety)

If your BBQ grill comes into direct contact with food, like most Korean BBQ grill tops do, NSF certification ensures it's safe and hygienic.
Why it matters:
Commonly required in restaurants in the U.S. and Canada.
Often expected for smokeless BBQ equipment with built-in heating surfaces.
Ensures easy cleaning and prevents contamination.


5. CSA Certification (Canada)

If you’re opening a Korean BBQ restaurant in Canada, look for CSA-cert


We provide high-quality Korean BBQ grills and smokeless BBQ equipment, fully certified for the U.S., EU, Middle East, and other markets. Whether you're opening a new restaurant or upgrading your kitchen, our products help you stay compliant, safe, and stylish.

Mechanism of action and anticorrosion principle of preservatives

Mechanism of action and preservative principle 

preservatives are a class of additives that can inhibit microbial activity and prevent spoilage of products such as food or cosmetics. They play a crucial role in ensuring food safety and extending the shelf life of products. The following are the main mechanisms of action and principles of preservatives: 

1. Interference with the enzyme system of microorganisms 

Preservatives can inhibit enzyme activity by interfering with the enzyme system of microorganisms and disrupting their normal metabolic processes. This way of action makes microorganisms unable to grow and reproduce normally. 2.

2. Coagulation and denaturation of microbial proteins 

Certain preservatives can coagulate or denature microbial proteins, thereby interfering with their survival and reproduction. This mechanism affects microbial life by altering the structure of proteins, causing them to lose their original function.

3. Altering the permeability of the plasma membrane 

Preservatives can also alter the permeability of the plasma membrane of microorganisms, inhibiting the elimination of enzymes and metabolites from their bodies and leading to cell inactivation. By affecting the integrity of the cell membrane, this mode of action prevents the entry of nutrients and the elimination of wastes, ultimately leading to the death of the microorganism.

4. Affecting genetic material or the structure of genetic particles 

Some preservatives are able to act on the genetic material or the structure of genetic particles of microorganisms, affecting processes such as replication of the genetic material, transcription and translation of proteins. This mechanism prevents microorganisms from reproducing and growing by interfering with their gene expression.

5. Influence of environmental factors 

The action of preservatives is also influenced by environmental factors, such as temperature, pH, osmotic pressure, radiation, hydrostatic pressure, water source, nutrients, oxygen, organic growth factors, etc. These factors can affect the effect of preservatives, for example, under acidic conditions, certain preservatives have a strong inhibitory ability against molds, yeasts and bacteria.

To summarize 

Preservatives inhibit the growth and multiplication of microorganisms through a variety of mechanisms, thereby extending the shelf life of products such as food or cosmetics. Understanding these mechanisms of action and principles of preservation helps to select appropriate preservatives to ensure product safety and effectiveness. In practical application, appropriate preservatives should be selected according to the specific use environment and target microorganisms, and used in strict accordance with relevant standards to avoid adverse effects on human health.

Moringa Powder Benefits and Effects

Moringa powder is a powder made from the grinding of moringa seeds, with a variety of effects and functions, as follows: 

Nutritional supplements 

Supplementary proteins: Moringa powder is rich in protein components, which can supplement nutrients for the human body, but also promote the synthesis of immunoglobulin, alleviate the symptoms of limb weakness due to the lack of protein in the body, which is conducive to physical health.

Supplemental trace elements: Moringa powder contains a variety of trace elements, such as amino acids, calcium, vitamin E, potassium, etc., appropriate consumption can supplement the body's need for trace elements, to a certain extent, to prevent malnutrition. 

Enhance the body 

Moringa powder contains chorism and alkaloids, has a certain antiseptic effect, appropriate consumption can be to a certain extent to improve the body's physical condition, but chorism can not be a substitute for medicines! Treatment of diseases.

Improve digestion 

Chipotle powder contains a large amount of dietary fiber, can promote gastrointestinal peristalsis, conducive to the digestion and absorption of food, with the aid of improving the role of constipation.

Assist in lowering blood sugar 

Some of the bioactive ingredients contained in chili powder can affect the secretion and utilization of insulin through a variety of pathways, thus assisting in lowering blood sugar.

Other effects 

Chipotle powder can provide the human body with a large amount of vitamin C, vitamin A, Vitamin E, has a strong antioxidant effect, helps the liver to remove free radicals, slow down the aging of liver cells, enhance the detoxification function of liver cells, but also has the role of detoxification of alcohol to protect the liver.

Although moringa powder has many of the above effects, but can not replace the medicine to treat the disease. If uncomfortable symptoms occur, you should seek medical advice and treatment under the guidance of a doctor. In addition, excessive consumption of moringa powder may irritate the gastrointestinal tract, causing bloating, abdominal pain and other discomforts, and consumption by pregnant women may also lead to uterine contractions, triggering miscarriages, and is therefore contraindicated in pregnant women.

Sweetness of mannitol compared to sucrose

Comparison of Sweetness Values 

Different sources state differently how sweeteners of mannitol compares to sucrose, but in general mannitol is less sweet than sucrose, though closer. Relevant information is as follows: 

The sweetness of industrial grade mannitol is about 57% - 72% of sucrose3. 

There is also information that the sweetness of mannitol is 50 - 70% of the sweetness of sucrose4. 

There is also information that shows mannitol has a sweet taste, and that its sweetness is equivalent to 70% of that of sucrose6. 

sweetness Significance of the comparison 

In food applications, this sweetness comparison is of great significance. Because mannitol has the least water absorption among sugars and sugar alcohols and has a pleasant sweetness, it is often used as an anti-sticking agent in foods such as maltose, chewing gum, rice cakes, and as an anti-sticking powder in general confectionery, and as a low-calorie, low-sugar sweetener in foods for diabetic patients, bodybuilding foods, etc.36 It can provide a sweetness close to that of sucrose while meeting the needs of special populations for a low-calorie intake and playing a special physical role in the preparation of some food products. It plays a special physical role in the preparation of some foods.

Comparison of the sweetness of different sugar alcohols with sucrose 

In addition to mannitol, other common sugar alcohols also differ in sweetness from sucrose. For example, the sweetness of erythritol is about 70% that of sucrose, maltitol is 90% that of sucrose, sorbitol is 60% that of sucrose, xylitol is as sweet as regular sucrose, isomaltrexol is 45-65% that of sucrose, and lactitol is 30-40% that of sucrose.4 These comparisons provide a clearer view of the position of the sweetness of mannitol in the context of many sugar alcohols.

The dangers of maltitol

Hazards of Maltitol 

Maltitol is a common artificial sweeteners commonly used in the preparation of candies, chewing gum, chocolates and other foods. When consumed in moderation, maltitol is generally harmless and has benefits such as being low in calories, preventing dental caries and laxative. However, excessive consumption or long-term intake of large quantities may bring about a series of health problems.

1. Digestive problems 

Bloating and diarrhea: Maltitol is not easily and completely absorbed in the intestines, and excessive consumption may lead to gastrointestinal discomforts such as bloating, diarrhea, and bowel sounds. This is because the unabsorbed portion will be metabolized by bacteria in the large intestine, producing gas and water, thus causing gastrointestinal discomfort.

Gastrointestinal mucosal damage: Maltitol is cold in nature and is not easily dissolved by digestive enzymes, it will accumulate in the gastrointestinal tract after intake, and repeated stimulation of the gastrointestinal tract may damage the gastrointestinal mucosa, resulting in gastric and abdominal pain. 

2. Blood sugar effects 

Despite the low glycemic index of maltitol, its excessive intake may still have some impact on blood glucose control, especially in diabetic patients. Prolonged intake of maltitol in large quantities may be absorbed by the body and converted to glucose, resulting in elevated blood glucose, which is detrimental to disease control.

3. Metabolic burden 

Excessive consumption of maltitol will increase the metabolic burden of the liver and kidney. As maltitol is not easy to be digested and absorbed, it may be converted into fat and accumulate in the body if consumed in large quantities over a long period of time, thus leading to obesity and weight gain.

4. Allergic reactions 

A few people may be allergic to maltitol and develop symptoms such as rash, itching and difficulty in breathing.

5. Nutrient absorption disruption 

Maltitol may interfere with the absorption of certain minerals and vitamins, affecting the body's intake of other important nutrients.

6. Oral health problems 

Although maltitol does not generally cause tooth decay, if consumed in excess, it may react with bacteria in the mouth that produce acids that can damage teeth and increase the risk of gum disease and tooth decay.

7. Cardiovascular Health Risks 

Excessive intake of maltitol is not conducive to the dissolution of carbohydrates and fats. It also affects metabolism and tends to deposit fats in capillaries, leading to elevated blood pressure, and may even increase the risk of blood vessel blockage.

Conclusion 

Maltitol, as a low-calorie sweetener, is safe when used in moderation, but for special populations (e.g., diabetic patients, hypertensive patients, and those with weak gastrointestinal function), it is recommended that it be used with caution and ingested under medical supervision. To minimize potential health risks, excessive consumption of maltitol should be avoided while maintaining a balanced diet and healthy lifestyle.